Difference between revisions of "Notes:The foundations of Mathematics - Kunen"
From Maths
(Saving work) |
(No difference)
|
Latest revision as of 02:38, 31 July 2016
Chapter I: Set Theory
Section I.1
Section I.2: The axioms
| # | Axiom | Definition | Comment |
|---|---|---|---|
| 0 | Existence | [ilmath]\exists x(x=x)[/ilmath] | |
| 1 | Extensionality | [ilmath]\forall z(x\in x\leftrightarrow z\in y)\rightarrow x=y[/ilmath] | |
| 2 | Foundation | [ilmath]\exists y(y\in x)\rightarrow\exists y(y\in x\wedge\not\exists z(z\in x\wedge z\in y))[/ilmath] | |
| 3 | Comprehension schema | [ilmath]\exists y\forall x(x\in y\leftrightarrow x\in z\wedge\varphi(x))[/ilmath] | [ilmath]\varphi[/ilmath] a formula, [ilmath]y[/ilmath] not free |
| 4 | Pairing | [ilmath]\exists z(x\in z\wedge y\in z)[/ilmath] | |
| 5 | Union | [ilmath]\exists A\forall Y\forall x(x\in Y\wedge Y\in\mathcal{F}\rightarrow x\in A)[/ilmath] | Union of [ilmath]\mathcal{F} [/ilmath] |
| 6 | Replacement schema | [ilmath]\forall x\in A\exists!y\varphi(x,y)\rightarrow\exists B\forall x\in A\exists y\in B\varphi(x,y)[/ilmath] | For each formula, without [ilmath]B[/ilmath] free |
| 7 | Infinity | [ilmath]\exists x(\emptyset\in x\wedge\forall y\in x(S(y)\in x))[/ilmath] | |
| 8 | Power set | [ilmath]\exists y\forall z(z\subseteq x\rightarrow z\in y)[/ilmath] | |
| 9 | Choice | [ilmath]\emptyset\not\in F\wedge\forall x\in F\forall y\in F(x\neq y\rightarrow x\cap y=\emptyset)\rightarrow \exists C\forall x\in F(\text{Sing}(C\cap x))[/ilmath] |
- Alec's note: "axiom" 0 can be shown from the axiom of infinity.
Theories
| Theory | Axioms | Comment | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
| ZFC | x | x | x | x | x | x | x | x | x | |
| ZF | x | x | x | x | x | x | x | x | ||
| ZC | x | x | x | x | x | x | x | x | ||
| Z | x | x | x | x | x | x | x | |||
| Z- | x | x | x | x | x | x | ||||
| ZF- | x | x | x | x | x | x | x | |||
| ZC- | x | x | x | x | x | x | x | |||
| ZFC- | x | x | x | x | x | x | x | x | ||