Difference between revisions of "Totally bounded"
From Maths
(Created page with "==Definition== A metric space {{M|(X,d)}} is ''totally bounded'' if{{rITTGG}}: * {{M|1=\forall\epsilon>0\exists n\in\mathbb{N}\exists\{B_i\}_{i=1}^n\text{ of} }} open ba...") |
m (Marking stub) |
||
Line 1: | Line 1: | ||
+ | {{Stub page|grade=A|msg=Demote once content added - MOVE TO OWN PAGE, as there are probably other kinds of totally bounded}} | ||
==Definition== | ==Definition== | ||
A [[metric space]] {{M|(X,d)}} is ''totally bounded'' if{{rITTGG}}: | A [[metric space]] {{M|(X,d)}} is ''totally bounded'' if{{rITTGG}}: |
Latest revision as of 19:44, 27 May 2016
Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Demote once content added - MOVE TO OWN PAGE, as there are probably other kinds of totally bounded
Definition
A metric space (X,d) is totally bounded if[1]:
- ∀ϵ>0∃n∈N∃{Bi}ni=1 of open balls of radius ϵ[X⊆∪ni=1Bi], that is:
- ∀ϵ>0 there exists a finite collection of open balls, each of radius ϵ, such that the family of balls cover X